Netatalk CVE-2018-1160 复现及漏洞利用思路

Netatalk CVE-2018-1160 复现及漏洞利用思路

Cx1ng 看雪学苑 2023-04-22 17:59

本文为看雪论坛精华文章

看雪论坛作者ID:Cx1ng

Netatalk 是一个 Apple Filing Protocol (AFP) 的开源实现。它为 Unix 风格系统提供了与 Macintosh 文件共享的功能。AFP的数据流量包格式为DSI(Data Stream Interface),DSI 在客户端和 AFP 服务器之间使用。

首先需要搭建netatalk的运行环境,这里使用docker搭建Ubuntu18.04,可以在docker Ubuntu18.04中进行环境复现。

这里有两种方法,一是在docker中下载源码、安装依赖环境编译,二是在本机中下载源码、依赖编译。我这里选择了比较稳妥的的第一中。

运行Ubuntu 18.04的镜像,没有会自动从官方docker仓库中pull。

关于详细的安装步骤可以参考先知的这篇文章搭建环境,如果你想使用我的环境可以使用下面链接下载我的docker镜像。

链接:https://pan.baidu.com/s/1NJOfT9xS111RSmgcSbEW3Q提取码:8r5i

你需要使用如下命令启动docker,以保证我docker中的设置正常运行。

netatalk处理请求类似于Apache,对于每一个用户请求都会为其fork一个子进程处理,而父进程则监控请求的处理情况。netatalk的关键运行模块主要有两个,主模块afpd和AFP协议流量包处理模块libnetatalk。其中afpd主要功能为初始化服务的环境、监听和接受处理请求并为之构建请求处理的环境,而libnetatalk是具体解析和处理dsi流量的。

注1:Netatalk的大部分功能性函数命名风格采用 模块命名空间_函数描述 的格式,如afp_exit、afp_over_dsi、dsi_opensession等。注2: DSI流量包格式可以参考这篇wiki,Data_Stream_Interface。

对于理解Netatalk,需要用afp_start、afp_over_dsi为主线理解。

afp_start在main中被调用,通过阅读下面代码可以得知。第一个关键代码处调用了init_listening_sockets
其目的是watch atp, dsi sockets and ipc parent/child file descriptor
,也就是从这里开始监听APF请求了。

继续往下看,我们发现了(child = dsi_start(&obj, (DSI *)(asev->data[i].private), server_children))
这行代码,返货了进程描述符,这意味着从这里开始已经真正开始接收和处理请求了。

我们再来看afp_start
函数。

首先调用了dsi_getsession
,并且forked后进入afp_over_dsi
处理本次请求。我们先看dsi_getsession
,我们可以看到在第一个数据包中只允许我们利用DSI中的command字段访问两个Command命令或者说函数,分别是DSIGetStatus
和DSIOpenSession

我们查阅一下,DSIOpenSession
命令的分支即dsi_opensession
函数。我们看到switch语句在解析DSI session options时,DSIOPT_ATTNQUANT
分支中出现了一个memcpy(&dsi->attn_quantum, dsi->commands + i + 1, dsi->commands[i]);
语句,这里存在一个越界写漏洞

在进入到dsi_opensession
函数之前,会隐式的调用dsi_stream_receive
函数,将我们发送的DSI数据包中的Payload字段 copy to dsi->commands中。而Payload字段是可控的,用户发包时自由指定,只要服务可以解析即可。因此,我们发现payload在这里实际上解析的格式是payload[0]:code, payload[1]:size, payload[2:size -1]:data
,而memcpy拷贝至的dsi->attn_quantum变量却是一个uint32类型。

也就说,只要我们合理设置size和data就可以触发越界写,覆盖&dsi->attn_quantum后面的字段。我们可以往后覆盖多少个字节呢?

dsi->commands是一个uint8类型的指针,也就是解析格式中size最大值为255,我们可以往后覆盖255个字节。

DSI结构体如下,从attn_quantum字段往后溢出,我们最多可以溢出至data数组的部分空间(data数组非常大)。比较关键的是我们可以覆盖指针dsi->commands。在后面的漏洞分析小节,我们会纤细的讨论覆盖commands指针所导致的严重后果,这将使得我们可以RCE。

afp_start->dsi_getsession->dsi_opensession这条路径我们分析至此。大意的作用从两个关键函数名也可以看出来,核心就是open session,配置一些东西并开启正式的连接会话,你可以理解为TCP建立连接前的三次握手,但是在配置过程中产生了越界写漏洞。

我们再继续从afp_start->afp_over_dsi开始看。afp_over_dsi处理正式连接的请求核心再这个while循环。

首先第一行重要代码cmd = dsi_stream_receive(dsi);
,Blocking read on the network socket
,即阻塞地从socket连接中读取dsi steam,即会解析dsi流量填充dsi结构体,也就是反序列化dsi流量。

我们进入快速阅读一下dsi_stream_receive
函数,注意我们关注的是该函数如何从socket中读取数据填充dsi结构体。我们可以明显的发现block
变量即是DSI Header,将block
copy todsi.header
中。

而其中关键的数据包的body也即payload或者说dsi data是同过一行if (dsi_stream_read(dsi, dsi->commands, dsi->cmdlen) != dsi->cmdlen)
从dsi结构体的buffer中读取到dsi->commands指针指向的内存中,最后其返回值返回block[1],也就是我们下图1中给出的DSI Header结构中的Command字段。

至此我们了解该函数是如何把DSI流量数据填充进 dsi structure。

注3:这里我们就发现了任意地址写漏洞。我们最开始的越界写,第一次发包可以覆盖commands,而后续发包可以往commands中写入我们希望的数据,指针劫持并可控的写指针指向内存,并且我们发现我们可以写多少是由图1的total data length这个字段决定的,而这个字段是4字节大小且根据payload的长度计算值,因此我们可以写非常长的payload。任意地址写漏洞是后续RCE的基。我们之所以可以如此是因为dsi->commands指针的生命周期与dsi结构体生命周期是一样的,存在于一次连接中。

我们继续回到afp_over_dsi的while循环中。再dsi_stream_receive
函数返回时,其返回值同时也是本次请求的Command字段,该返回值进入Switch语句执行对应的command命令,而我们着重关注最核心的case DSIFUNC_CMD
分支。这个分支的作用简而言之,就是根据我们DSI数据流中的Payload字段的数据,执行AFP回调函数。

我们可以发现核心的afp_switch
变量,通过全局搜索afp_switch =
可以发现两处赋值(如图2所示)。通过变量名和两张回调函数表的内容,可以猜测,一个是未登入或未授权时走preauth_switch
,一个是登入成功或授权时走postauth_switch

注4:我们拥有了任意地址写,那么处理得当,我们可以为授权时通过任意地址写将afp_switch
的值改成postauth_switch
,我们将可以访问postauth_switch
中的回调函数,即触发未授权访问。更进一步,我们将preauth_switch
或postauth_switch
表中的一些项改成我们希望的代码段地址、one_gadget等,将触发RCE。因此目前我们已经从漏洞点中分析出未授权访问和RCE两种利用方式了。

我们已经将两条主线分析完毕,也从中点出了漏洞点以及可能的利用方式,那么我们这一小节将根据我们的代码分析、漏洞点分析,讨论可能的利用思路和方式。

具体的,我们会讨论越界写漏洞导致潜在任意地址写如何得以实现,即将潜在的变为真正的;我们将讨论任意地址写得以实现后,将详细分析如何RCE,简单的提一下如何进行未授权访问postauth_switch
中的函数。

0x00 任意地址写


我们可以在第一次发送DSI数据包时,触发越界写,劫持commands指针,那么我们如何得以让commands指针写入我们希望的地址呢?在未开启ASLR时,这并不难,但现在我们开启了ASLR,我们没办法确定任意一个模块的base adress。

这时我们不妨先,先看一看内存布局。尽管程序开启了ASLR,但是我们每次处理我们连接的是fork出来的子进程,而子进程的虚拟进程空间的内存布局与父进程是一致的,也就是说每次fork出来的子进程其地址在父进程生命周期内都是固定的。

注5:gdb附加容器进程进行调试请使用如下命令sudo gdb -q -p pgrep -n afp –ex “set follow-fork-mode child”

如图3,通过观察,我们可以得知ASLR的Randomization主要是 0x00 00 7f ?? ?? ?? ?0 00,这样的随机化规律。那么,我们可以通过不断的写commands指针的地址试,逐个试探??,观察子进程是否crash。

若commands指针地址不可写,那么后续读commands指针数据的操作将触发非法内存访问导致进程crash,无法响应我们的请求。也就是说,如果我们发的包修改的commands指针地址合法,我们会收到响应的数据包,如果没有那么就意味着我们写的commands指针地址非法。

首先,commands指针原始的地址肯定是合法的、可写的。我们可以选择从0x00 00 7f ?? ?? ?? ?0 00
的高字节逐字节往低试探(即上诉格式的从左往右消除问号),每当我们收到响应包时,我们便确定了一个??
,转之继续往下一个??
试探,直至确定一个合法的可写地址。当我们确定一个合法的地址时,有什么用呢?ELF模块之间的相对位置通常是固定的,例如afpd永远是第一个加载的模块。

由此当我们在内存中确定一个可写内存的位置时,其相对于其他模块、地址的偏移也是相对固定的,差也不会差太多。我们可以这样来爆破,我们从高地址开始逐渐向低地址爆破,然后每一个字节爆破的值从255->0开始,那么我们拿到的地址,几乎可以肯定的说落在地址最高的ELF模块中。

同理,从低字节开始往高字节写,从0->255开始,把7f
也当作??
试探,几乎可以肯定你会得到一个落在afpd模块中的可读可写地址。由于后面我给出的Exploit是通过泄露libc,劫持__free_hook指针进行内存布局并RCE的。所以我的泄露地址思路是尽量泄露一个离libc近的地址,因为图5中libc地址足够高,因此我也选择泄露一个高地址。

代码如下:该代码泄露出来的地址,落在最高的模块中。并且出于简单考虑,在这个形式中的泄露格式0x00 00 7f ?? ?? ?? ?0 00
,我把最后两个字节默认抹除为0了,也即只需要泄露三个字节,并且我们泄露出来的地址是0x1000对齐的。

那么我们既然泄露出了一个可读可写的地址,如果我想写libc中的一些数据怎么办?或者我想写afpd中的一些数据结构怎么办?那么自然需要泄露对应的基地址。

以libc写为例子,我给出的代码泄露出来的地址要么是位于ld-2.27.so中,要么是位于其下方的mmap内存中,我们可以大概的估算一下我们泄露的地址与libc之间的距离,一大步的靠近,然后一路小跑抵达libc基地址。

例如我这里算出来的一大步是0x18040000~0x1880000这个区间,我们从直接一大步跨过0x18040000,然后以0x1000一小步一小步的跑向libc。afpd同理,甚至更加简单。

0x01 RCE


现在我们解决了任意地址写的问题,那么我们来考虑如何进行RCE。泄露了libc以及可以任意地址写,那么常规的思路就是劫持函数指针获得控制流。注意下面的讲解一开始你可能有点困惑,但请看到这以小节的最后你再读一遍就会明白了。

由三个gadgets可以完成这个思路。具体的,先看这一段gadgets,setcontext + 53
(图4,红框)。我们可以看见只要我们能够控制rdi寄存器,那么我们就能控制几乎所有的寄存器,包括rsp和rip,也就是说我们就达成了劫持控制流、控制了几乎所有寄存器。这一段gadgets其实就是在进行SROP中 signal frame的构建,此时rdi相对于指向就是signal frame的顶部。

因此,我们可以通过pwntools中的SigreturnFrame方便的控制这段代码对寄存器的赋值,只要我们可以控制rdi。![image.png]

为了控制rdi,我们需要另外两个gadgets。一个是__libc_dlopen_mode + 56
,一个是fgetpos64+207
,分别如图5、图6所示。


那么我如何控制dl_open_hook呢?在libc2.27中,_dl_open_hook地址比free_hook大约高0x2b00左右(不同版本编译器编译出来的libc2.27可能略有差别,但总体大约再0x2b00左右)。距离这么远,我们可以覆盖到吗?


答案是,可以。(在Netatalk的代码分析小节的注3部分,我们讨论了一次性可以最多写入多大的数据)简言之,我们将commands指针覆盖至free_hook的地址处,随后根据三条gadgets的调用链,依次往后布局内存,使得我们最终能够控制rdi,进而控制程序流以及几乎所有寄存器,完成RCE。

0x02 未授权访问


未授权访问的核心是泄露afpd的基地址,然后获取其中的三个关键数据结构preauth_switch
、postauth_switch
和afp_switch
,再通过任意地址写将afp_switch
变量的值写成postauth_switch
,即可进行未授权访问!

https://gtrboy.github.io/posts/netatalk/#0x04-%E5%88%A9%E7%94%A8

https://xuanxuanblingbling.github.io/ctf/pwn/2021/11/06/netatalk

https://medium.com/tenable-techblog/exploiting-an-18-year-old-bug-b47afe54172

https://en.wikipedia.org/wiki/Data_Stream_Interface#cite_note-2

https://xz.aliyun.com/t/3710

看雪ID:Cx1ng

https://bbs.kanxue.com/user-home-921065.htm

*本文由看雪论坛 Cx1ng 原创,转载请注明来自看雪社区

#往期推荐

1、一种新的绕过EDR的思路研究

2、IDAPython 系列 —— 画出两个函数的交叉引用图

3、调试httpd通过fork+execute调用的cgibin程序

4、微信界面逆向分析

5、CTFHUB-UnsortedBin Attack

6、Wibu Codemeter 7.3学习笔记——Codemeter API调用及通信协议

球分享

球点赞

球在看